
Transport Layer Identification of P2P Traffic

Thomas Karagiannis
UC Riverside

Andre Broido
CAIDA, SDSC

Michalis Faloutsos
UC Riverside

Kc claffy
CAIDA, SDSC

ABSTRACT
Since the emergence of peer-to-peer (P2P) networking in the
late ’90s, P2P applications have multiplied, evolved and es-
tablished themselves as the leading ‘growth app’ of Internet
traffic workload. In contrast to first-generation P2P net-
works which used well-defined port numbers, current P2P
applications have the ability to disguise their existence through
the use of arbitrary ports. As a result, reliable estimates of
P2P traffic require examination of packet payload, a method-
ological landmine from legal, privacy, technical, logistic, and
fiscal perspectives. Indeed, access to user payload is often
rendered impossible by one of these factors, inhibiting trust-
worthy estimation of P2P traffic growth and dynamics. In
this paper, we develop a systematic methodology to identify
P2P flows at the transport layer, i.e., based on connection
patterns of P2P networks, and without relying on packet
payload. We believe our approach is the first method for
characterizing P2P traffic using only knowledge of network
dynamics rather than any user payload. To evaluate our
methodology, we also develop a payload technique for P2P
traffic identification, by reverse engineering and analyzing
the nine most popular P2P protocols, and demonstrate its
efficacy with the discovery of P2P protocols in our traces
that were previously unknown to us. Finally, our results
indicate that P2P traffic continues to grow unabatedly, con-
trary to reports in the popular media.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks

General Terms
Algorithms, Measurement

Keywords
Peer-to-peer, Measurements, Traffic classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’04, October 25–27, 2004, Taormina, Sicily, Italy.
Copyright 2004 ACM 1-58113-821-0/04/0010 ...$5.00.

1. INTRODUCTION
Over the last few years, peer-to-peer (P2P) file-sharing

has relentlessly grown to represent a formidable component
of Internet traffic. P2P volume is sufficiently dominant on
some links to incent increased local peering among Inter-
net Service Providers [24], to observable yet unquantified
effect on the global Internet topology and routing system
not to mention competitive market dynamics. Despite this
dramatic growth, reliable profiling of P2P traffic remains
elusive. We no longer enjoy the fleeting benefit of first-
generation P2P traffic, which was relatively easily classi-
fied due to its use of well-defined port numbers. Current
P2P networks tend to intentionally disguise their generated
traffic to circumvent both filtering firewalls as well as legal
issues most emphatically articulated by the Recording In-
dustry Association of America (RIAA). Not only do most
P2P networks now operate on top of nonstandard, custom-
designed proprietary protocols, but also current P2P clients
can easily operate on any port number, even HTTP’s port
80.

These circumstances portend a frustrating conclusion: ro-
bust identification of P2P traffic is only possible by examin-
ing user payload. Yet packet payload capture and analysis
poses a set of often insurmountable methodological land-
mines: legal, privacy, technical, logistic, and financial ob-
stacles abound, and overcoming them leaves the task of re-
verse engineering a growing number of poorly documented
P2P protocols. Further obfuscating workload characteriza-
tion attempts is the increasing tendency of P2P protocols
to support payload encryption. Indeed, the frequency with
which P2P protocols are introduced and/or upgraded ren-
ders packet payload analysis not only impractical but also
glaringly inefficient.

In this paper we develop a systematic methodology to
identify P2P flows at the transport layer, i.e., based on flow
connection patterns of P2P traffic, and without relying on
packet payload. The significance of our algorithm lies in its
ability to identify P2P protocols without depending on their
underlying format, which offers a distinct advantage over
payload analysis: we can identify previously unknown P2P
protocols. In fact during our analysis we detected traffic of
three distinct P2P protocols previously unknown to us. To
validate our methodology we also developed a payload-based
technique for P2P traffic identification, by reverse engineer-
ing and analyzing the nine most popular P2P protocols.

Specifically, the highlights of our paper include:

• We develop a systematic methodology for P2P traffic
profiling by identifying flow patterns and character-

Table 1: Bulk sizes of OC-48 datasets
Set Bb Date Day Start Dur Dir Src.IP Dst.IP Flows Packets Bytes Aver.Util. Ut.%

D09N 2 2003-05-07 Wed 10:00 2 h Nbd (1) 904 K 2992 K 56.7 M 930.4 M 603 G 651 Mbps 26.2
D09S 2 2003-05-07 Wed 10:00 2 h Sbd (0) 466 K 2527 K 47.3 M 624.2 M 340 G 376 Mbps 15.1
D10N 2 2004-01-22 Thu 14:00 60 m Nbd (1) 812 K 2181 K 23.6 M 412.7 M 288 G 638.9 Mbps 25.7
D10S 2 2004-01-22 Thu 14:00 60 m Sbd (0) 279 K 4177 K 18.6 M 252.7 M 117 G 260.4 Mbps 10.5
D11S 2 2004-02-25 Wed 10:00 2 h Sbd (0) 410 K 7465 K 25.3 M 249.6 M 98.5 G 109.4 Mbps 4.4
D13N 2 2004-04-21 Wed 20:00 122 m Nbd (1) 1971 K 6956 K 86.4 M 1263 M 852 G 930.6 Mbps 37.4
D13S 2 2004-04-21 Wed 20:00 122 m Sbd (0) 306 K 10847 K 27.8 M 266.4 M 106 G 115.5 Mbps 4.6

istics of P2P behavior, without examination of user
payload.

• Our methodology effectively identifies 99% of P2P flows
and more than 95% of P2P bytes (compared to pay-
load analysis), while limiting false positives to under
10%.

• Our methodology is capable of identifying P2P flows
missed by payload analysis. Using our methodology
we identify approximately 10% additional P2P flows
over payload analysis.

• Using data collected at an OC48 (2.5Gbps) link of a
Tier1 Internet Service Provider (ISP), we provide re-
alistic estimates and trends of P2P traffic in the wide-
area Internet over the last few years. We find that in
contrast to claims of a sharp decline, P2P traffic has
been constantly growing.

Our methodology can be expanded to support profiling of
various types of traffic. Since mapping applications by port
numbers is no longer substantially valid, a generalized ver-
sion of our algorithm can support traffic characterization
tasks beyond P2P workload. Indeed, to minimize false pos-
itives in P2P traffic identification, we assess, and then filter
by, connection features of numerous protocols and applica-
tions (such as mail or DNS).

The rest of this paper is structured as follows: Section 2
describes our backbone traces, which span from May 2003
to April 2004. Section 3 discusses previous work in P2P
traffic estimation and analysis. Sections 4 and 5 describe in
detail our payload and nonpayload methodologies for P2P
traffic identification. Section 6 presents an evaluation of our
algorithm by comparing the volume of P2P identified by
our methods. In section 7 we challenge media claims that
the pervasive litigation undertaken by the RIAA is causing
an overall decline in P2P file-sharing activity. Section 8
concludes our paper.

2. DATA DESCRIPTION
Part of the analyzed traces in this paper are included in

CAIDA’s Backbone Data Kit (BDK) [1], consisting of packet
traces captured at an OC-48 link of a Tier 1 US ISP connect-
ing POPs from San Jose, California to Seattle, Washington.

Table 1 lists general workload dimensions of our datasets:
counts of distinct source and destination IP addresses and
the numbers of flows, packets, and bytes observed. We pro-
cessed traces with CAIDA’s Coral Reef suite [19].

We analyze traces taken on May 5, 2003 (D09), January
22, 2004 (D10) February 25, 2004 (D11) and April 21,2004
(D13). We captured the traces with Dag 4 monitors [13]
and packet capture software from the University of Waikato
and Endace [11] that supports observation of one or both
directions of the link.

For our older traces (D01-D10), our monitors captured
44 bytes of each packet, which includes IP and TCP/UDP
headers and an initial 4 bytes of payload for some packets.

However, approximately 60%-80% of the packets in these
traces are encapsulated with an extra 4-byte MPLS label
which leaves no space for payload bytes.

Fortunately we were able to capture the February and
April 2004 traces (D11 and D13) with 16 bytes of TCP/UDP
payload which allows us to evaluate our nonpayload method-
ology. To protect privacy, our monitoring system anonymized
the IP addresses in these traces using the Cryptography-
based Prefix-preserving Anonymization algorithm (Crypto-
PAn) [33].

3. PREVIOUS WORK
Most P2P traffic research has thus far emphasized detailed

characterization of a small subset of P2P protocols and/or
networks [18] [14], often motivated by the dominance of that
protocol in a particular provider’s infrastructure or during
a specific time period. Typical data sources range from aca-
demic network connections [27], [20] to Tier 2 ISPs [21].

Other P2P measurement studies have focused on topo-
logical characteristics of P2P networks based on flow level
analysis [29], or investigating properties such as bottleneck
bandwidths [27], the possibility of caching [21], or the avail-
ability and retrieval of content [3] [12].

Recently, Sen et al. developed a signature-based payload
methodology [28] to identify P2P traffic. The authors focus
on TCP signatures that characterize file downloads in five
P2P protocols based on the examination of user payload.
The methodology in [28] is similar to our payload analysis
and it is further discussed in section 4.

A number of Sprint studies [8] report on P2P traffic as
observed in a major Tier 1 provider backbone. However,
their volume estimates taxonomize applications based on
fixed port numbers from CoralReef’s database [22], which
captures a small and decreasing fraction of p2p traffic.

Our approach differs from previous work in three ways:

• We analyze traffic sources of exceptionally high diver-
sity, from major Tier 1 ISPs at the Internet core.

• We study all popular P2P applications available : Nei-
ther of our methodologies (payload and nonpayload)
are limited to a subset of P2P networks. On the con-
trary we study those P2P applications that currently
contribute the vast majority of P2P traffic.

• We combine and cross-validate identification methods
that use fixed ports, payload, and transport layer dy-
namics.

4. PAYLOAD ANALYSIS OF P2P TRAFFIC
AND LIMITATIONS

Our payload analysis of P2P traffic is based on identifying
characteristic bit strings in packet payload that potentially
represent control traffic of P2P protocols. We monitor the
nine most popular P2P protocols: eDonkey [9] (also includes

the Overnet and eMule [10] networks), Fasttrack which is
supported by the Kazaa client, BitTorrent [4], OpenNap and
WinMx [32], Gnutella, MP2P [23], Soulseek [30], Ares [2]
and Direct Connect [7].

Each of these P2P networks operate on top of nonstan-
dard, usually custom-designed proprietary protocols. Hence,
payload identification of P2P traffic requires separate anal-
ysis of the various P2P protocols to identify the specific
packet format used in each case. This section describes lim-
itations that inhibit accurate identification of P2P traffic at
the link level. In addition, we present our methodology to
identify P2P flows.

4.1 Limitations
We had to carefully consider several issues throughout our

study. While some of these restrictions are data related, oth-
ers originate from the nature of P2P protocols. Specifically,
these limitations are the following:

Captured payload size : CAIDA monitors capture the
first 16 bytes of user payload1 of each packet (see section 2)
for our February and April traces. While our payload heuris-
tics would be capable of effectively identifying all P2P pack-
ets if the whole payload were available, this 16-byte payload
restriction limits the number of heuristics that can reliably
pinpoint P2P flows. Furthermore, our older traces (May
2003, January 2004) only contain 4 bytes of payload for a
limited number of packets, since our monitors were used to
capture 44 bytes for each packet (e.g., TCP options will push
payload bytes out of the captured segment. Limitations for
our older traces are described in detail in section 7).

HTTP requests : Several P2P protocols use HTTP re-
quests and responses to transfer files, and it can be impos-
sible to distinguish such P2P traffic from typical web traffic
given only 16 bytes of payload, e.g., “HTTP/1.1 206 Partial
Content” could represent either HTTP or P2P .

Encryption : An increasing number of P2P protocols rely
on encryption and SSL to transmit packets and files. Pay-
load string matching misses all P2P encrypted packets.

Other P2P protocols : The widespread use of file-sharing
and P2P applications yields a broad variety of P2P proto-
cols. Thus our analysis of the top nine P2P protocols cannot
guarantee identification of all P2P flows, especially given the
diversity of the OC48 backbone link. However, our experi-
ence with P2P applications and traffic analysis convinces
us that these nine protocols represent the vast majority of
current P2P traffic.

Unidirectional traces : Some of our traces reflect only
one direction of the monitored link. In these cases we cannot
identify flows that carry the TCP acknowledgment stream
of a P2P download, since there is no payload. Even if we
monitored both directions of the link, asymmetric routing
renders it unlikely to find both streams (data and acknowl-
edgment) of a TCP flow on the same link.

We can overcome these limitations with our nonpayload
methodology described in section 5.

4.2 Methodology
Our analysis is based on identifying specific bit strings

in the application-level user data. Since documentation for

1Privacy issues and agreement with the ISP prohibit the
examination of more bytes of user payload.

Table 2: Strings at the beginning of the payload of P2P

protocols. The character “0x” below implies Hex strings.

P2P Protocol String Trans. prot. Def. ports

eDonkey2000 0xe319010000 TCP/UDP 4661-4665
0xc53f010000

Fasttrack “Get /.hash” TCP 1214
0x270000002980 UDP

BitTorrent “0x13Bit” TCP 6881-6889
Gnutella “GNUT”, “GIV” TCP 6346-6347

“GND” UDP
MP2P GO!!, MD5, SIZ0x20 TCP 41170 UDP

Direct Connect “$MyN”,”$Dir” TCP 411-412
“$SR” UDP

Ares “GET hash:” TCP -
“Get sha1:”

P2P protocols is generally poor, we empirically derived a set
of distinctive bit strings for each case by monitoring both
TCP and UDP traffic using tcpdump[31] after installing var-
ious P2P clients. Table 2 lists a subset of these strings for
some of the analyzed protocols for TCP and UDP. Table 2
also presents the well-known ports for these P2P protocols.
The complete list of bit strings we used is in [17].

We classify packets into flows, defined by the 5-tuple source
IP, destination IP, protocol, source port and destination
port. We use the commonly accepted 64-second flow time-
out [6], i.e., if no packet arrives in a specific flow for 64 sec-
onds, the flow expires. To address the limitations described
in the previous section, we apply three different methods to
estimate P2P traffic, listed by increasing levels of aggres-
siveness as to which flows it classifies as P2P :

M1: If a source or destination port number of a flow
matches one of the well-known port numbers (Table 2) the
flow is flagged as P2P.

M2: We compare the payload (if any) of each packet in a
flow against our table of strings. In case of a match between
the 16-byte payload of a packet and one of our bit strings,
we flag the flow as P2P with the corresponding protocol,
e.g., Fasttrack, eDonkey, etc. If none of the packets match,
we classify the flow as non-P2P.

M3: If a flow is flagged as P2P, both source and destina-
tion IP addresses of this flow are hashed into a table. All
flows that contain an IP address in this table are flagged
as “possible P2P” even if there is no payload match. To
avoid recursive misclassification of non-P2P flows as P2P,
we perform this type of IP tracking only for host IPs that
M2 identified as P2P .

In all P2P networks, P2P clients maintain a large number
of connections open even if there are no active file transfers.
There is thus increased probability that a host identified as
P2P from M2 will participate in other P2P flows. These
flows will be flagged as “possible P2P” in M3. On the other
hand, a P2P user may be browsing the web or sending email
while connected to a P2P network. Thus, to minimize false
positives we exclude from M3 all flows whose source or des-
tination port implies web, mail, FTP, SSL, DNS (i.e., ports
80, 8000, 8080, 25, 110, 21, 22, 443, 53) for TCP and online
gaming and DNS (e.g., 27015-27050, 53) for UDP 2.

In general, we believe that M3 will provide an estimate
closer to the real intensity of P2P traffic, especially with lim-

2Since nothing prevents P2P clients from using these ports
also, excluding specific protocols by looking at port numbers
may result in underestimating P2P flows.

ited 4-byte payload traces, while M2 provides a loose lower
bound on P2P volume. M3 takes advantage of our ability to
identify IPs participating in P2P flows as determined by M2,
facilitating identification of flows for which payload analysis
fails. M3 is used only in section 7, where we examine the
evolution of the volume of P2P traffic. In that section, we
use M3 to overcome the problem of the limited 4-byte payload
in our older traces. For all other analysis, payload P2P esti-
mates are strictly based on payload string matching, namely
M2.

Recently, Sen et al. developed a similar signature-based
payload methodology [28]. The authors concentrate on TCP
signatures that characterize file downloads in five P2P proto-
cols and identify P2P traffic based on the examination of all
user payload bytes. [28] describes a subset of the signatures
included in our methodology, since we also use UDP-based
as well as protocol signaling signatures for a larger number
of P2P protocols/networks (e.g., the WinMx/OpenNap net-
work is not analyzed in [28], although it corresponds to a
significant portion of P2P traffic [16]). On the other hand,
[28] presents the advantage of examining all user payload
bytes. While examining all bytes of the payload should in-
crease the amount of identified P2P traffic, we expect only
a minimum difference in the number of identified P2P flows
between [28] and the methodology described in this section.
First, characteristic signatures or bit strings of P2P packets
appear at the beginning of user payload; thus, 16 bytes of
payload should be sufficient to capture the majority of P2P
flows. Second, we expect that missed flows due to the pay-
load limitation will be identified by our M3 method and/or
by TCP and UDP control traffic originating from the specific
IPs.

5. NONPAYLOADIDENTIFICATIONOFP2P
TRAFFIC

We now describe our nonpayload methodology for P2P
traffic profiling (PTP). Our method only examines the packet
header to detect P2P flows, and does not in any way exam-
ine user payload. To our knowledge, this is a first attempt to
identity P2P flows on arbitrary ports without any inspection
of user payload.

Our heuristics are based on observing connection patterns
of source and destination IPs. While some of these patterns
are not unique to P2P hosts, examining the flow history of
IPs can help eliminate false positives and reveal distinctive
features.

We employ two main heuristics that examine the behavior
of two different types of pairs of flow keys. The first exam-
ines source-destination IP pairs that use both TCP and UDP
to transfer data (TCP/UDP heuristic, section 5.1). The sec-
ond is based on how P2P peers connect to each other by
studying connection characteristics of {IP, port} pairs (sec-
tion 5.2). A high level description of our algorithm is as
follows:

• Data processing : We build the flow table as we observe
packets cross the link, based on 5-tuples, similar to the
payload method. At the same time we collect infor-
mation on various characteristics of {IP, port} pairs,
including the sets of distinct IPs and ports that an
{IP, port} pair is connected to, packet sizes used and
transferred flow sizes.

Table 3: Excluded ports for TCP/UDP IP pairs heuristic.
Ports Application

135,137,139,445 NETBIOS
53 DNS
123 NTP
500 ISAKMP

554,7070,1755,6970,5000,5001 streaming
7000, 7514, 6667 IRC
6112, 6868, 6899 gaming

3531 p2pnetworking.exe

• Identification of potential P2P pairs : We flag potential
flows as P2P based on TCP/UDP usage and the {IP,
port} connection characteristics.

• False positives : We eliminate false positives by com-
paring flagged P2P flows against our set of heuristics
that identify mail servers, DNS flows, malware, etc.

5.1 TCP/UDP IP pairs
Our first heuristic identifies source-destination IP pairs

that use both TCP and UDP transport protocols. Six out
of nine analyzed P2P protocols use both TCP and UDP as
layer-4 transport protocols. These protocols include eDon-
key, Fasttrack, WinMx, Gnutella, MP2P and Direct Con-
nect. Generally, control traffic, queries and query-replies
use UDP, and actual data transfers use TCP. To identify
P2P hosts we can thus look for pairs of source-destination
hosts that use both transport protocols (TCP and UDP).

While concurrent usage of both TCP and UDP is defi-
nitely typical for the aforementioned P2P protocols, it is also
used for other application layer protocols such as DNS or
streaming media. To determine non-P2P applications in our
traces that use both transport protocols, we examined all
source-destination host pairs for which both TCP and UDP
flows exist. We found that besides P2P protocols, only a few
applications use both TCP and UDP transport protocols:
DNS, NETBIOS, IRC, gaming and streaming, which collec-
tively typically use a small set of port numbers such as 135,
137, 139, 445, 53, 3531, etc. Table 3 lists all such applica-
tions found, together with their well-known ports. Port 445
is related to the Microsoft NETBIOS service. Port 3531 is
used by an application called p2pnetworking.exe which is au-
tomatically installed by Kazaa. Although p2pnetworking.exe
is related to P2P traffic, we choose to exclude it from our
analysis since it is not under user control3 and specific only
to the Kazaa client. Excluding flows using ports presented in
Table 3, 98.5% of the remaining IP source-destination pairs
that use both TCP and UDP in our traces are P2P, based
on the payload analysis with M2 described in Section 4. In
summary, if a source-destination IP pair concurrently uses
both TCP and UDP as transport protocols, we consider flows
between this pair P2P so long as the source or destination
ports are not in the set in Table 3.

5.2 {IP, port} pairs
Our second heuristic is based on monitoring connection

patterns of {IP, port} pairs.
Since the lawsuit against Napster, the prevalence of cen-

tralized P2P networks has decreased dramatically, and dis-
tributed or hybrid P2P networks have emerged. To connect
to these distributed networks, each P2P client maintains a

3The user cannot change the port number or control its
functionality, and all flows of p2p.networking.exe use port
3531.

Figure 1: Initial connection from a new P2P host A to the P2P network. Host A connects to a superpeer picked from its

host cache. Peer A informs the superpeer of its IP address and the port willing to accept connections from other peers. The

superpeer propagates the {IP, port} pair to the rest of the P2P network. Peers willing to connect to host A, use the advertised

{IP, port} pair. For the {IP, port} pair {A,1}, the number of distinct IPs (C,B) connected to it is equal to the number of

distinct ports (10,15) used to connect to it. Our {IP, port} pair heuristic is based on such equality between the number of

distinct ports and the number of distinct IPs affiliated with a pair in order to identify potential P2P pairs.

starting host cache. Depending on the network, the host
cache may contain the IP addresses of other peers, servers
or supernodes/superpeers.4 This pool of hosts facilitates
the initial connection of the new peer to the existing P2P
network.

As soon as a connection exists to one of the IPs in the host
cache (we will henceforth refer to these IPs as superpeers),
the new host A informs that superpeer of its IP address and
port number at which it will accept connections from peers.
Host A also provides other information specific to each P2P
protocol but not relevant here. While in first-generation
P2P networks the listening port was well-defined and spe-
cific to each network, simplifying P2P traffic classification,
newer versions of all P2P clients allow the user to config-
ure a random port number (some clients even advise users
to change the port number to disguise their traffic). The
superpeer must propagate this information, mainly the {IP,
port} pair of the new host A, to the rest of the network. This
{IP, port} pair is essentially the new host’s ID, which other
peers need to use to connect to it. In summary, when a P2P
host initiates either a TCP or a UDP connection to peer A,
the destination port will also be the advertised listening port
of host A, and the source port will be an ephemeral random
port chosen by the client.

Normally, peers maintain at most one TCP connection to
each other peer, but there may also be a UDP flow to the
same peer, as described previously. Keeping in mind that
multiple connections between peers is rare in our data sets,
we consider what happens when twenty peers all connect
to peer A. Each peer will select a temporary source port
and connect to the advertised listening port of peer A. The
advertised {IP, port} pair of host A would thus be affiliated
with 20 distinct IPs and 20 distinct ports 5. In other words,
for the advertised destination {IP, port} pair of host A, the
number of distinct IPs connected to it will be equal to the
number of distinct ports used to connect to it. Figure 1
illustrates the procedure whereby a new host connects to
the P2P network and advertises its {IP, port} pair.

4Superpeers/supernodes are P2P hosts that handle ad-
vanced functionality in the P2P network, such as routing
and query propagation.
5The probability that two distinct hosts pick the same ran-
dom source port at the same time is extremely low.

On the other hand, consider what happens in the case of
web and HTTP. As in the P2P case, each host connects to
a pre-specified {IP, port} pair, e.g., the IP address of a web
server W and port 80. However, a host connecting to the
web server will initiate usually more than one concurrent
connection in order to download objects in parallel. In sum-
mary, web traffic will have a higher ratio than P2P traffic of
the number of distinct ports versus number of distinct IPs
connected to the {IP, port} pair {W,80}.
5.3 Methodology

Our nonpayload methodology builds on insights from pre-
vious sections 5.1 and 5.2. Specifically, for a time interval
t we build the flow table for the link, based on the five-
tuple key and 64-second flow timeout as with the payload
methodology described in section 4. We then examine our
two primary heuristics:

• We look for source-destination IP pairs that concur-
rently use both TCP and UDP during t. If such IP
pairs exist and they do not use any ports from table 3,
we consider them P2P.

• We examine all source {srcIP, srcport} and destination
{dstIP, dstport} pairs during t (use of pairs will hence-
forth imply both source and destination {IP, port}
pairs). We seek pairs for which the number of dis-
tinct connected IPs is equal to the number of distinct
connected ports. All pairs for which this equality holds
are considered P2P . In contrast, if the difference be-
tween connected IPs and ports for a certain pair is
large (e.g., larger than 10), we regard this pair as non
P2P.

These two simple heuristics efficiently classify most pairs
as P2P or nonP2P. In particular the {IP, port} heuristic
can effectively identify P2P and nonP2P pairs given a suf-
ficiently large sample of connections for the specific pair.
For example, with time interval t of 5 minutes there are no
false positives for pairs with more than 20 connections in
our February 2004 trace (D11 of Table 1.) That is, for this
specific trace, if an IP pair has more than 20 IPs connect
to it, we can classify it with high confidence as P2P or not
P2P.

Whether a flow is considered P2P depends on the classifi-
cation of its {IP, port} pairs. If one of the pairs in the 5-tuple
flow key has been classified as P2P, this flow is deemed P2P.
Similarly, if one of the pairs is classified as non P2P, so is
the flow. Additionally, if one of the IPs in a flow has been
found to match the TCP/UDP heuristic, the flow is also
considered as P2P.

5.4 False positives
We now describe heuristics developed to decrease the risk

of false positives. Considering the diversity of backbone
links that feature a vast number of IPs and flows, we ex-
pect the previous methodology to yield false positives, i.e.,
classifying nonP2P pairs as P2P. False positives are most
common in pairs with few connections, and also more fre-
quent for specific applications/protocols whose connection
behavior matches the P2P profile of our heuristics (e.g., one
connection per {IP,port} pair), e.g., e-mail (SMTP, POP),
DNS and gaming.

To decrease the rate of false positives we review the con-
nection and flow history of all pairs where the probability
of a misclassification is high, e.g., the source or destination
port is equal to 25 and implies SMTP. Past flow history for
these pairs enables accurate classification by investigating
properties of specific IPs. In the following subsections, we
describe heuristics that augment our basic methodology to
limit the magnitude of false positives.

5.4.1 Mail

In our data sets, e-mail protocols such as Simple Mail
Transfer Protocol (SMTP) or Post Office Protocol (POP)
contribute most false positives. Mail false positives are not
surprising since connection behavior resembles our {IP, port}
heuristic. However, analysis of mail flows and connection
patterns allows for identification of mail servers in our traces,
forestalling misidentification of traffic to such IP addresses
as P2P.

We examine all flows where one of the port numbers is
equal to 25 (SMTP), 110 (POP) or 113 (authentication ser-
vice commonly used by mail servers). In fact we treat these
three port numbers as one (we consider ports 110 and 113
equal to 25), since for our purpose their behavior is the same.
We identify mail servers based on their port usage history
and whether they have different flows during the same time
interval t that use port 25 for both source and destination
port. The following observed flow pattern illustrates this
characteristic behavior of mail servers by examining the us-
age of port 25 by IP 238.30.35.43 :

src IP dst IP proto srcport dstport
238.30.35.43 115.78.57.213 6 25 3267
238.30.35.43 238.45.242.104 6 22092 25
238.30.35.43 0.32.132.109 6 25 50827
238.30.35.43 71.199.74.68 6 22175 25
238.30.35.43 4.87.3.29 6 21961 25
238.30.35.43 4.87.3.29 6 22016 25
238.30.35.43 4.170.125.67 6 25 3301
238.30.35.43 5.173.60.126 6 22066 25
238.30.35.43 5.173.60.126 6 22067 25
238.30.35.43 227.186.155.214 6 22265 25
238.30.35.43 227.186.155.214 6 22266 25
238.30.35.43 5.170.237.207 6 25 3872

This case shows flows for IP 238.30.35.43 6 with port 25
as source port for some flows and destination port for other
flows. This behavior is characteristic of mail servers that

6Note that IP addresses are anonymized.

initiate connections to other mail servers to propagate e-
mail messages. To identify this pattern, we monitor the set
of destination port numbers for each IP for which there ex-
ists a source pair {IP,25}. If this set of destination port
numbers also contains port 25, we consider this IP a mail
server and classify all its flows as nonP2P. Similarly for the
set of source ports of an IP for which there exists a desti-
nation pair {IP,25}. In the above example, for the source
pair {238.30.35.43,25}, the set of destination ports is [3267,
25, 50827, 3301, 3872]. Since port 25 appears in this set, we
infer that IP 238.30.35.43 is a mail server and deem all of its
flows nonP2P. We keep all IPs identified as mail servers in a
mailserver list to avoid future application of our heuristics
to them.

5.4.2 DNS

The Domain Name Server protocol runs on top of both
TCP and UDP port 53 and is characterized mainly by nu-
merous short flows, i.e, few packets/bytes and short dura-
tion. DNS connection patterns are analogous to our {IP,
port} pair heuristic, although DNS pairs are easier to iden-
tify since most DNS source and destination ports are 53. For
example, the following is a representative pattern of UDP
DNS flows,

src IP dst IP proto srcport dstport
252.60.148.12 0.121.94.5 17 53 53
115.254.223.8 243.11.142.6 17 53 53

In this case the observed {IP, port} pairs are considered
nonP2P , e.g., {252.60.148.12,53}, {0.121.94.5,53}, due to
the use of port 53 as source and destination port in the
flow 5-tuple. As with the mail server IPs, we maintain a
list of rejected pairs to exclude from further analysis other
possible flows for these pairs. For example, source pair
{252.60.148.12,53} may have additional DNS flows to other
IPs but with destination port other than 53. But since we
identified the specific pair as a DNS false positive, we also
rule out the possibility that any of these additional flows
are P2P. The heuristic ensures that DNS flows will be effec-
tively identified and removed for our P2P estimate even if a
specific host is part of a P2P network. Thus, only true P2P
flows of a host will be considered and not its DNS requests.

We do not restrict the use of this heuristic to DNS. On the
contrary, we apply it to all flows and pairs where one of the
ports is less than 501. This heuristic facilitates the removal
of other false positives in commonly used ports (e.g., port
numbers such as 25), especially those caused by a service
that runs on port 500. In these flows both ports are equal
to 500, similar to the pattern described here. Thus, for all
flows where the source port is equal to the destination port,
and the port number is less than 501, both source and desti-
nation {IP, port} pairs are considered nonP2P, and they are
inserted in a list of definitively nonP2P pairs. This heuristic
was inspired by DNS flow features and thus is called “DNS
heuristic”, although it is not necessarily specific to DNS.

5.4.3 Gaming and malware

On-line gaming runs mainly on top of UDP. Characteristic
examples of on-line games with sufficient traffic in our traces
are Age of Empires, Half-life and Quake. On the other hand,
malware tends to run over TCP. By malware, we mean worm
traffic (e.g. MyDoom on ports 3127,3128, or Beagle on port
2745) and port or address space scans, which appear often
in backbone traces.

Gaming and malware bear a similar property: many flows
to different IPs/ports, carrying the same number of pack-

ets/bytes and/or with same-sized packets. Consider the fol-
lowing UDP flow pattern from the game Half-life:

src IP dst IP pr sprt dprt pkts bytes
3.195.130.255 145.46.189.100 17 1990 27015 4 160
13.15.101.255 145.46.189.100 17 2989 27015 5 200
115.254.14.42 145.46.189.100 17 3965 27015 1 40

For all flows of {IP, port} pair {145.46.189.100,27015}, all
packets likely have the same size, or it is at least consistent
with dividing the number of bytes by the number of pack-
ets in each flow (i.e., the mean packet size). In all flows,
the average packet size is 40. On the contrary, if we con-
sider the {IP, port} heuristic, we would accept all the pairs
as P2P pairs, since the number of distinct IPs equals the
number of distinct ports connecting to them, e.g., for pair
{145.46.189.100,27015} there are 3 distinct IPs and 3 dis-
tinct ports, while for pair {3.195.130.255,1990} there is 1
distinct IP and 1 distinct port.

To remove such pairs, we maintain for each {IP, port} pair
a set of distinct average packet sizes and a set of distinct
total transfer sizes. We also have two different sets of port
numbers:

KnownP2PPortsSet: [4661, 4662, 4665, 1214, 6346, 6347,
412, 411, 41170, 6881-6889, 6699, 6257, 2234]

MalwarePortsSet: [3127, 3128, 1433, 1434, 3531, 1080,
10080, 17300, 6129, 27015, 27016, 901, 2745]

The first contains the known P2P port numbers; the second,
malware and gaming ports. We classify an {IP, port} pair
as nonP2P if:

{ length(pair.transfer_sizesSet) == 1 or
length(pair.avg_pktssizesSet) < 3 }

AND

port not in KnownP2PPortsSet

AND

{ length(pair.IPSet) > 5 or port < 501
or port in MalwarePortsSet }

where transfer sizesSet is the set of distinct transfer sizes of
all flows for this pair, avg pktssizesSet is the set of distinct
average packet sizes of all flows of this pair and IPSet is the
set of distinct IPs of this pair. Note that these sets cannot
contain duplicate entries since we only insert unique values
into them once.

In summary, we classify an {IP, port} pair as nonP2P
if the following conditions all hold: the port is not in the
known P2P ports set; the pair only has one transfer size or
less than three distinct average packet sizes (average packet
size is the total transfer size in the flow divided by the total
number of packets); the pair has flows to more than five IPs
or the port is in the malware ports set. As with the DNS
heuristic, we insert all {IP, port} pairs that agree with the
above rule in a list of non P2P pairs.

5.4.4 Other heuristics

We apply a number of other rules that offer finer grained
analysis of {IP, port} pairs.

Scans: In addition to the heuristic for malware and gam-
ing, we count the number of {IP, port} pairs in which a
specific IP appears, to rule out port scans as false positives.
Specifically, we reject all IPs that appear in a large number
of {IP, port} pairs and at the same time target a few IPs.

One-packet pairs : We remove all one packet flows whose
IPs do not appear in any other flows in the trace. We have
no way to consider these P2P traffic.

MSN messenger servers : We found and removed all flows
to MSN messenger servers. We could identify these flows
easily since they used port 1863 and three distinct destina-
tion IPs within the same prefix.

Port history : To further remove web, DNS and mail false
positives, we examined the set of distinct ports used to con-
nect to an {IP, port} pair. If all ports in the set reflect
well-known services, e.g., mail, web and DNS, we rule out
the pair as P2P if it appears in at least ten flows. While P2P
applications may use port numbers that canonically map to
well-known services, it is highly unlikely that P2P clients
will connect only to such port numbers, since current ver-
sions of P2P clients randomize the port at which they accept
connections. For such a case to exist, a large fraction of P2P
users would have to change their client’s listening port to 80
or 25.

5.5 Final Algorithm
Combining the techniques of all previous subsections yields

our final nonpayload methodology for identification of P2P
flows. Note that our algorithm is designed for analysis of
passive traffic traces, allowing for multiple passes over the
data if necessary. In addition, we have not optimized for
memory consumption and performance. Adapting our al-
gorithm for active real-time monitoring of P2P traffic at
network speed is part of our ongoing work.

Algorithm 1 (PTP) presents in detail the procedure ex-
ecuted every time interval. At the beginning of section 5
we described three distinct phases, but during execution
these phases overlap with one another. Across time inter-
vals we maintain a set of different lists, since knowledge
learned in one interval is likely to help in future intervals.
The maintained lists are based on the flow table for the
specific interval and correspond to our P2P identification
heuristics as well as to our false positive handling method-
ologies. Specifically, the lists we maintain across time in-
tervals include: the P2PIP list, which contains IPs already
classified as P2P by the TCP/UDP IP pair heuristic (sec-
tion 5.1); the P2PPairs list, which contains {IP,Port} pairs
already classified as P2P by the {IP,Port} pair heuristic;
the Rejected and MailServers lists, which contain rejected
pairs and IPs (false positive heuristics); and the IPPort list,
which includes the {IP,Port} pairs of all flows that are not in
MailServers or Rejected lists. Each {IP,Port} pair that is an
item of the IPPort list is coupled with sets that include: a)
the distinct IPs (IPSet) appearing in flows with the specific
pair, b) the distinct ports used in flows for the specific pair
(PortSet), c) distinct average packet sizes in flows for this
pair(avg pktssizesSet) and d) distinct transferred flow sizes
for this pair (transfer sizesSet).

At the end of each interval, we analyze all {IP,Port} pairs
in the IPPort list against our false-positive heuristics. This
analysis is based on the aforementioned lists and the de-
scription of the heuristics in all previous subsections. If all
false-positive heuristics fail, the specific {IP,Port} pair and
all flows matching this pair are deemed P2P. All flows of IPs
in the P2PIP list are also considered P2P .

Despite the existence of various constants in the PTP al-
gorithm such as the different port lists (e.g., KnownP2PPortsSet),
we expect human intervention to be minimum and port lists
to be stable over periods of months. Specifically, these con-
stants depend on the link in question (e.g., which games
contribute large numbers of flows) and should be updated

Algorithm 1 Nonpayload algorithm for P2P flow identifi-
cation
1: procedure PTP . P2P Traffic Profiliing
2: FT ← Flow Table
3: for every src-dst IP pair in FT do
4: if TCP/UDP pair then
5: P2PIP.insert(srcIP) . TCP/UDP heuristic
6: P2PIP.insert(dstIP)
7: for all flows in FT do
8: if src IP or dst IP in P2PIP then
9: print flow . found by TCP/UDP pairs

10: P2PIP.insert(srcIP) . put both IPs in P2P
list

11: P2PIP.insert(dstIP)
12: else if DNS heuristic is true then
13: RejectedPairs.insert(src Pair) .

pair=={IP,port}
14: RejectedPairs.insert(dst Pair)
15: else if src and dst IP not in MailServers then
16: for src and dst IP-port pair do
17: if pair in P2PPairs then
18: print flow . found in previous interval
19: P2PPairs.insert(src pair) . put both

pairs in P2PPairs list
20: P2PIP.insert(src pair)
21: else if pair not in Rejected then
22: Udpate sets for pair
23: IPPort.insert(pair)
24: else if pair in Rejected then
25: Rejected.insert(src pair)
26: Rejected.insert(dst pair)
27: for pairs in IPPort do

. examine pairs that were added during

. previous intervals and have not been yet classi-
fied

28: if IP not in MailServers and pair not in Rejected
then

29: if IP in P2PIP or pair in P2PPairs then
30: P2PPairs.insert(pair)
31: print all flows of pair
32: else
33: diff ← |pair.IPSet.len−pair.PortSet.len|
34: if diff < 2 or (diff < 10 and port in

KnownP2PPorts) then
35: if Check if Mailserver == true then
36: MailServer.insert(IP)
37: else if Check if Malware == true

then
38: Rejected.insert(pair)
39: else if Check if scan == true then
40: Rejected.insert(pair)
41: else if Port History heuristic=true

then
42: Rejected.insert(pair)
43: else
44: P2PPairs.insert(pair)
45: print all flows of pair
46: else if diff> 10 then

Rejected.insert(pair)

when significant changes occur in the specific traffic mix
(e.g., sufficient amount of packets or flows by a new worm
or a new P2P network).

Finally, note that for the {IP, port} pairs heuristic we indi-
rectly separate flows into two different classes. The first class
is flows where one of the ports is within the KnownP2PPortsSet.
In this case we deem the absolute difference of the sizes of
IPSet and PortSet to be acceptable if less than 10, since the
probability that the specific pair is actually P2P is higher.
(Note that the sizes of IPSet and PortSet indicate the num-
ber of distinct ports and distinct IPs affiliated with the
specific {IP,Port} pair, see {IP,port} heuristic, section 5.2.)
While new P2P clients randomize port numbers, there still
exist P2P clients that use known P2P ports (most users do
not immediately upgrade to newer versions that randomize
the port). On the contrary, for all other flows, we allow
a maximum difference of 1 between the sizes of IPSet and
PortSet. While our {IP,port} heuristic, assumes equal sizes
of PortSet and IPSet, we allow limited inequality to account
for possible failed connections which is common in P2P be-
havior 7.

6. EVALUATION
In this section we evaluate the accuracy of our method-

ology, by comparing nonpayload versus payload estimates
of P2P traffic. We will use our recent 16-byte payload
traces (February and April 2004) and strict payload match-
ing (method M2 in section 4.) We avoid using M3 for com-
parison purposes in this section; first, 16-byte payload traces
offer sufficient number of payload bytes to identify the vast
majority of P2P flows. Second, M3 could introduce am-
biguity in evaluating the PTP Algorithm, since we would
compare against flows that we cannot determine with abso-
lute certainty if they are P2P or not (M3 introduces false
positives and targets 4-byte payload traces to mitigate the
disadvantage of only 4-bytes of user payload). Thus, we
only use M2 for payload analysis in this section. We first
compare the number of P2P flows and bytes as identified
by the two methodologies. In addition, we study the ex-
tent and nature of false positives. Finally, we show how our
methodology overcomes disadvantages of payload analysis
and present the volumes of additional P2P flows that we
were able to identify.

6.1 Fraction of identified P2P traffic
We now demonstrate how PTP Algorithm performs com-

pared to payload analysis, in particular what fraction of P2P
traffic found by payload analysis (M2, Sec.4) can be found
by PTP Algorithm.

Fig. 2 and 3 summarize our findings. Fig. 2 presents the
bitrate of P2P traffic determined by payload analysis (upper
line) and the fraction identified by PTP Algorithm (bottom
line). For all P2P flows that were previously discovered by
payload inspection, we examine whether PTP Algorithm
also classified them as P2P. As shown in Fig. 2, the two
lines fall almost on top of each other in all three traces,

7The values of 1 and 10 in the difference between the sizes
of the IPSet and PortSet have a minimal effect in our algo-
rithm. Allowing larger differences will only impact slightly
the number of false positives. The two classes of flows reflect
the fact that pairs with port in the knownP2PPortSet are
more likely to be P2P.

Figure 2: The bitrate of P2P traffic as determined by our payload methodology (upper line) and the portion that was

identified by our nonpayload algorithm (bottom line). In all three traces our nonpayload methodology successfully

identifies more than 90% of P2P bytes. Even with increasing P2P bitrate (approx. 220 Mbps, right plot), the algorithm

identifies more than 95% of P2P bytes.

Figure 3: Identified (upper line) vs. missed (bottom line) P2P flows and bytes of our nonpayload methodology as

compared to payload examination (logarithmic scale.) Flows and bytes are shown in total volumes every five minutes.

Only 0.5% of P2P flows are not identified. Note that despite large difference in utilization across our traces, the

fraction of missed flows remains almost constant.

indicating that our approach is able to accurately identify
the vast majority of P2P traffic.

Fig. 3 better depicts the success of the nonpayload method-
ology. Specifically, we examine what portions of flows and
bytes found by payload inspection are also identified by PTP
Algorithm as P2P . The bottom line plots the total number
of P2P flows and bytes missed by the nonpayload algorithm
in five-minute intervals. The upper line plots the total vol-
umes of identified flows and bytes. The Y axis is plotted
on logarithmic scale to facilitate comparison. The top row
of plots presents the number of flows while the bottom row
the volumes in bytes. Finally, each column of plots in Fig. 3
reflects a different trace.

Our nonpayload based methodology discovers more than
90% of total P2P bytes and 99% of P2P flows. These per-
centages appear to be independent of the total traffic on
the link. Despite large variation in traffic volumes across
our traces (approximately one order of magnitude difference
between northbound and southbound direction in our moni-
tored link), PTP Algorithm performs sufficiently in all cases.
Note that the number of missed P2P flows is declining with

time, illustrating increasing knowledge of {IP,port} pairs
and their connection behavior for PTP Algorithm. On the
other hand, the fraction of unidentified P2P bytes depends
on the fluctuation of the volume of specific flows, which man-
ifests itself in the time-varying lines of missed bytes. That is,
the shape of the plot of missed bytes vs. time is affected by
the sizes of missed P2P flows. While the number of missed
flows using the nonpayload methodology may be decreasing,
a large missed P2P flow may cause the volume of missed P2P
bytes to noticeably increase.

6.2 False positives
As described earlier in the paper (section 5), several of

our heuristics aim at minimizing false positives, i.e., flows
misclassified as P2P. Minimizing false positives is a chal-
lenging task considering the dynamic nature, diversity of
sources and sheer volumes of traffic in the Internet core. We
strived to develop heuristics to account for and character-
ize the behavior of major classes (e.g. web, mail) of traffic
in order to discriminate them from P2P behavior. Thus,
false positives may originate from types of traffic that are

Figure 4: False positives vs correctly identified P2P flows and bytes. Flows and bytes are shown in total volumes every five

minutes. False positives account for 8%-12% of the total estimate (false positives plus correctly recognized P2P traffic).

Figure 5: Cumulative distribution function of number of

distinct IPs in {IP-port} pairs that lead to false identification

of flows as P2P. 98% of misclassifications were based on pairs

with fewer than five distinct IPs in the IPSet. These false

positives are due to an insufficient sample for the specific

pairs.

not profiled by our heuristics. However, attempting to elim-
inate false positives by profiling all types of traffic will only
increase the computational burden without sufficiently im-
proving the outcome. It is also unrealistic, especially in the
Internet core where we need to pinpoint tens of thousands of
P2P flows among the millions of flows crossing a backbone
link (Tab.1).

Fig. 4 indicates the number of false positives produced by
PTP Algorithm. False positives represent flows classified as
P2P by PTP Algorithm but not identified as such by pay-
load analysis. On the other hand, PTP Algorithm detects
true P2P flows that were missed by payload analysis due
to the limitations described in section 4. These flows are
not included in the false positives in Fig. 4; we will describe
them in the next section.

Fig. 4 presents the volume of flows and bytes correctly
classified as P2P, compared to the corresponding amounts
of false positives. The figure is structured similarly to Fig. 3;
the top and bottom rows show flows and bytes respectively,
while columns refer to our three different traces, and vol-
umes plotted in five-minute intervals.

False positives correspond to approximately 8% to 12%
of the total estimate of P2P traffic. The percentage of mis-
classified flows depends on the trace and the time within
the trace, but drops in all cases below 15% after the first
few time intervals. Similar to missed flows in the previous
section, false positives decrease and stabilize with time as
knowledge about the characteristics of specific IPs or pairs
increases.

The majority of false positives originate from the limited
number of samples for the specific {IP,port} pair. That is,
the sizes of both IPSet and PortSet in PTP Algorithm are
sufficiently small to allow specious inference of connection
patterns. Fig. 5 illustrates the cumulative distribution func-
tion of the IPSet size of all false positives in our April trace.
In both directions of link (southbound and northbound), the
size of IPSet for 98% of all false positives is less than five (an
IPSet size of 5 implies that the specific {IP-port} pair had
connections with only five other distinct IPs). In fact, ap-
proximately 90% of false positives represent {IP,port} pairs
that communicate with one IP only.

6.3 Robustness of PTP Algorithm
We examine the robustness of our algorithm with respect

to the effect of the time interval t between successive execu-
tions of PTP Algorithm.

The analysis of identified and missed P2P flows and false
positives in the previous subsections is based on 5-minute
time intervals (t = 5 min in PTP Algorithm). We now
examine how t affects the percentages of missed flows and
false positives. Note that variable t designates the period
during which the flow table is formed and the time interval
between successive executions of the algorithm.

Intuitively, short time intervals should be more sensitive
to transient phenomena and to IPs appearing in the link for
the first time. Larger t allows for more efficient profiling
of IPs and pairs. However, as t increases, memory require-
ments, e.g., the flow table size, increase.

Fig. 6 illustrates how missed and false positive flows vary
for three different time intervals (t) during our April south-
bound trace. To facilitate comparison we present the aver-
age number of missed and false positive flows per minute.

Figure 6: The effect of time interval t on missed and
false positive flows. As t increases the numbers of
missed flows and false positive flows decreases.

As expected, the 2-minute line appears noisier between suc-
cessive intervals (observe the large transient spike in the
number of false positives), in contrast to the smoother lines
for 5- and 10-minute intervals. While for missed flows the
three lines fall on top of each other after the first 30 minutes
in the trace, the number of false positives drops continually
as t increases. However, the difference in the volume of false
positives for five and ten minute intervals is trivial relative
to the number of flows in the link, especially when compar-
ing byte volumes. Since memory requirements for 5-minute
intervals are only a fraction of those for 10-minute intervals,
we settled on 5-minute intervals for our analysis.

The large spike in the 2-minute line of false positives is
caused by an address space scan in our trace. At this specific
time interval a distinct source IP scanned the address space
at destination port 4899 creating approximately 7,000 flows
per minute. Our false positive heuristics effectively recog-
nized that this IP is not P2P after two intervals when t = 2
min, indicated by the false positive line dropping sharply af-
ter the sudden increase. For larger time intervals our heuris-
tics effectively recognize all non P2P scanning flows, and
thus no spike appears in the 5 or 10 minute lines in Fig. 6.

6.4 Not so false “false positives"
An advantage of nonpayload identification of P2P traffic

is the possibility to overcome limitations of payload analysis
(see also section 4). Two inescapable limitations of payload
analysis are the following:
Payload methodologies cannot identify the invisible. If no
payload exists, P2P flows cannot be identified. Such flows
might be actual nonpayload flows (e.g., TCP acknowledg-
ment streams of file transfers), or flows with encrypted pay-
load.
Payload methodologies can only verify and not discover. In-
herently, payload methodologies require a priori knowledge
of the anatomy of P2P protocols, and as such they can only
be applied to previously reverse-engineered, known proto-
cols.

In contrast, our methodology is not affected by these con-
straints. Instead we are able to discover numerous flows that
were missed by payload analysis. To identify such flows we

separately examined flows that were identified as P2P by
PTP Algorithm but were missed by payload inspection, and
had at least one port number from our known P2P ports list
or one of the IPs consistently using P2P source or destina-
tion ports. History and connection patterns of IPs partici-
pating in such flows reveal their P2P nature.

Additionally and most important, PTP Algorithm can ef-
fectively discover unknown P2P protocols. We encountered
this powerful capability in the process of minimizing the
number of false positives. Comparing nonpayload with pay-
load classification, we observed numerous false positives in
five specific port numbers, namely 22321, 7674, 7675, 5335
and 9493. Inspection of payload for traffic under these port
numbers revealed that all of the aforementioned ports rep-
resent traffic of three distinct P2P protocols/networks un-
known to us. Two of the networks originate in Asia and
use both TCP and UDP: Soribada (ports 7674,7675, 22321)
and GoBoogy (port 5335). To date we have not been able
to identify the P2P protocol responsible for the traffic under
port 9493. However, a large number of packets contain the
string “GET /?p2pmethod=” in the 16-byte packet payload
available to us. Since access to the full packet payload is
not possible, we have no way of knowing what fraction of
the rest of the false positives mask yet more P2P protocols
that remain unidentified.

In total we were able to discover approximately 18,000 ad-
ditional P2P flows (350 additional Mbytes) over those dis-
covered with the payload methodology every five minutes on
the average for the April northbound trace, 3,000 additional
flows (15 additional MBytes) for the April southbound trace
and 1,900 additional flows (20 additional Mbytes) for the
February southbound trace.

6.5 Payload vs. nonpayload identification of
P2P traffic

The previous section suggests the flexibility of nonpay-
load methodologies. Here we provide an overall assessment
of advantages and disadvantages of payload versus nonpay-
load methodologies based on our experience. Overall, non-
payload methodologies provide diverse benefits over payload
analysis, specifically with regard to:

Privacy issues : Nonpayload methodologies offer an ideal
solution to the many perceived and real privacy and legal
alarms triggered by even the idea of inspecting of user pay-
load. Indeed, RIAA litigation has inspired among end users
as well as ISPs increased concern over privacy, which will
make providers even more reluctant to allow payload anal-
ysis. One could possibly obviate privacy issues in the pay-
load analysis by reporting only aggregate information of P2P
traffic at the monitoring site.

Anonymization of IP addresses : Nonpayload methodolo-
gies do not require anonymization of IP addresses, which
if performed inhibits further analysis of topological charac-
teristics of traffic (e.g., IPs cannot be aggregated to Au-
tonomous Systems). If payload examination is permitted,
ISPs require anonymization of IP addresses so that individ-
ual users cannot be linked to packet payload.

Storage overhead : The storage needed to support passive
analysis of payload traces significantly grows with increasing
bytes of captured payload. Our approach requires only up
to layer-4 header information. Alternatively, packet or flow
sampling could reduce storage overhead.

Processing overhead : Both in passive and active monitor-
ing, payload processing at network speed of an OC-48 link is
far beyond trivial due to the system memory bus bottleneck.
The bus is used by network monitoring cards to transfer the
whole packet header plus the examined payload bytes to
memory. Increasing the volume of captured payload risks
packet loss at high utilizations of a monitored link.

Reverse-engineering of protocols vs. P2P behavior analy-
sis: As noted previously in the paper (section 6.4), payload
methodologies have the ability only to verify and pinpoint
the existence of protocols that have been dissected in ad-
vance. On the contrary, monitoring nonpayload P2P be-
havior bypasses the requirement of previous knowledge and
facilitates detection of unfamiliar P2P networks.

Encryption: Payload methodologies fail for encrypted pay-
load which is bound to eventually become common, espe-
cially for newer versions of P2P protocols.

On the other hand, our methodology, at least in its cur-
rent form, is inferior to payload analysis regarding detailed
analysis of specific P2P protocols. Since we model the gen-
eral behavior of distributed (or semi-distributed) P2P net-
works, our algorithm currently cannot monitor individual
protocols.

7. P2P /FILE-SHARINGTRAFFICTRENDS
Recently, popular media sources have reported a sharp de-

cline in peer-to-peer (P2P) traffic during the last year [5] [26],
with P2P user populations reportedly dropping as much as
50%. This assertion, if true, would indicate a reversal in the
trend of the constant increase of P2P activity over the last
years (five out of the top six downloads from sourceforge.net
were P2P clients on July 27 2004).

In this section, we discuss these alleged P2P claims and
contrast them to our own results. Notwithstanding the in-
herently challenging nature of P2P traffic classification, as
we have definitively illustrated in this study, media reports
are rarely based on measuring, much less classifying, any
traffic on the Internet. Indeed, these reports base their con-
clusions on telephone surveys or periodic samples of log files
for a limited number of P2P networks/clients (specifically
for Kazaa, WinMx and a small number of Gnutella clients,
such as Morpheus, Grokster and Bearshare) that might have
been waning in popularity relative to newer, more advanced
P2P networks (e.g., eDonkey or BitTorrent).

However, using both payload and nonpayload methodolo-
gies, our OC-48 traces indicate that, if measured accurately,
P2P traffic has never declined; indeed we have never seen
the proportion of overall P2P traffic decrease over time (any
change is an increase) in any of our data sources. While
bitrate trends do not necessarily reflect trends in user popu-
lation counts, we believe that these statistics show that P2P
networks are largely unaffected by RIAA litigious practices.

In addition to the limitations of payload analysis method-
ologies described in section 4, we list here further compli-
cations that may affect comparison of P2P traffic volumes.
Specifically:

44-byte packets : In our older traces (D09 of May 2003,
D10 of January 2004), CAIDA monitors captured 44 bytes
of each packet (see section 2), leaving 4 bytes of TCP pack-
ets for examination (TCP headers are typically 40 bytes for
packets that have no options). To facilitate fair payload
comparison, we only use 4-byte payload heuristics through-

out this section for all traces. On the other hand, a UDP
header is only 8 bytes, which leaves enough payload bytes
for effective string matching on those packets.

MPLS : 60%-80% of the packets in our traces are encap-
sulated with 4-byte MPLS (Multiprotocol Label Switching)
headers. MPLS is used by this Tier1 ISP for routing and
traffic engineering purposes. MPLS decreases the number of
packets that can be matched against our string table since
for a significant amount of traffic there is no payload (4-byte
MPLS header + 40-byte TCP header).

ISP caching : To alleviate the effect of P2P traffic, ISPs
sometimes employ caching of P2P content [15]. P2P caching,
similar to web caching, is capable of reducing upstream traf-
fic yielding large savings for ISPs.8 Naturally, P2P requests
that are served by these caches do not reach the backbone,
resulting in a limited view of P2P usage especially when
comparing with past years before P2P caching became com-
mon.

P2P versus copyrighted traffic: Typically, the major-
ity of P2P traffic is related to copyrighted material. Al-
though we cannot necessarily equate P2P with copyrighted
traffic, the dominance of copyrighted material in most P2P
networks is largely accepted to be true. Our study cannot
identify the trends in the use of P2P networks for exchanging
copyrighted material.

Link utilization and time of the day : Two traces
can present drastically different characteristics, even if taken
on the same link at different times of day. While most of
our traces are collected during business hours, we compare
traces with varying utilizations and captured at different
time within the day. We thus compare P2P traffic relative
to the total volume of traffic in the link rather than focusing
on absolute values.

Conflicting traffic engineering goals : Because of its
large volume, ISPs are tempted to manipulate P2P traf-
fic according to their economic objectives. Networks that
pay for transit have an incentive to keep traffic within their
boundaries or those of their non-charging peers [25]. Net-
works that charge for transit can try to attract traffic by
adjusting routing and/or performance metrics (some P2P
clients prefer peers with lower RTTs; some, like BitTorrent,
choose ones with highest bitrate). An increase in peering
among cable companies was recently attributed to the rise
in P2P traffic [24]. Pricing of international vs. domestic
traffic can also play a role. Competitive peering behavior
can cause unpredictable link workload changes even when
other conditions are equal.

Finally, we note that many limitations of this analysis
(e.g., varying utilization across traces), as with virtually all
Internet measurement studies, are neither new nor unique
to Internet science.

7.1 P2P traffic is growing
We compare traces D09 from May 2003 (southbound and

northbound), D10 of January 2004 (southbound and north-
bound), D11 of February 2004 (southbound) and D13 of
April 2004 (southbound and northbound). (Recall that Ta-

8ISPs are usually charged based on the traffic they send
upstream to their own providers.

Figure 7: Estimation of the volume of P2P traffic using four different payload and nonpayload methodologies.
In all cases we observe a growing trend of P2P traffic, validated by all methodologies. Note also that estimates
of P2P traffic volume increase by 20%-100% when comparing port numbers with payload. Especially in our
northbound April 2004 trace, the payload estimate is more than double the estimate produced by port
numbers.

ble 1 lists bulk volumes and utilizations.) We use both pay-
load and nonpayload analysis. We present payload findings
analytically for each step of the methodology described in
section 4 (M1-M3).

Fig. 7 demonstrates the average bitrate of P2P traffic as
detected by each method for both directions of all traces. To
facilitate comparison, we present P2P volume as a percent-
age relative to total traffic volume across each trace. Despite
the aforementioned limitations, we make the following gen-
eral observations from Fig. 7:

Significant decline of P2P traffic is not corroborated : On
the contrary, P2P traffic in our recent traces is, if not grow-
ing, at least comparable to older traces from 2003 and Jan-
uary 2004. This trend is supported by all methodologies ex-
amined for the southbound direction. For the northbound
direction, May 2003 and January 2004 volumes are com-
parable for all methods beyond M1 (P2P rate in “known”
ports); P2P traffic in our April trace (even with significantly
higher total traffic volume on the link) surpasses all other
traces.

Failure of conventional estimation methodologies : As de-
picted in Fig. 7, using port numbers for traffic classification
is misleading. P2P traffic measurements based on port num-
bers results in underestimating P2P traffic by more than
50%, especially in recent traces. Fig. 7 also illustrates the
migration to random port numbers when comparing 2003
with 2004 traces. While for May 2003 the difference in the
estimates of M1 and M2 is minimal, it explodes in our 2004
traces. The change is the effect of newer P2P clients auto-
matically randomizing the port number.

Sufficient payload size : Comparing payload estimations of
P2P traffic with 4-byte and 16-byte payload for the Febru-
ary and April 2004 traces, demonstrates that the payload
limitation is also significant for robust identification. While
P2P traffic with 16-bytes of payload is estimated at approx-
imately 17% and 25% for February and April respectively
(shown in Fig. 2), estimates using 4-bytes of payload are
considerably lower. Increasing the captured payload size
beyond 16 bytes will potentially result in a further increase
in the estimates of P2P traffic. As noted in section 4, even
with 16 bytes of payload there are still conflicting bit strings
between web and P2P protocols. However, many factors,
among them a hardware bottleneck of our monitoring sys-
tem, limit the size of payload we can capture.

M3 vs. nonpayload methodology : Since the previous anal-
ysis suggests that our nonpayload algorithm overestimates
(compared to the payload estimates, section 6.2) approx-
imately 10%, M3 and nonpayload estimates in most cases
are comparable. Note that nonpayload estimates also in-
clude traffic from the three protocols discovered during our
nonpayload analysis, which supports our conjecture that M3
in our payload methodology more accurately estimates P2P
traffic.

In general, P2P traffic has grown to constitute a con-
siderable portion of traffic in our monitored backbone link,
confirming our assumption that estimations of P2P traffic
intensity based on a limited number of P2P networks or
characteristic port numbers is unrealistic. Our findings also
illustrate the expanding software alternatives for P2P users;
three previously unknown protocols in our traces constitute
a characteristic example of this increasing diversity of pro-
tocols and networks.

8. CONCLUSIONS
This paper focused on the non payload identification and

monitoring of a significant and growing component of In-
ternet traffic, namely P2P applications. Traditionally, P2P
traffic has been classified by well-known port numbers unique
to each protocol. However, growing concerns due to legal
and other complications have pushed P2P networks to chal-
lenge network “standards” by randomizing their port num-
bers and in general making some effort to disguise their ac-
tivity. As a result conventional measurement analyses are
bound to underestimate P2P traffic, and indeed, reliable
identification of P2P traffic requires examination of user
payload data.

We presented a method that relies on network and trans-
port layer behavior to identify P2P traffic. Specifically our
algorithm is based on profiling flow patterns of IP addresses.
In addition, to validate our methodology, we developed a
payload scheme to identify P2P flows by reverse-engineering
and analyzing the nine most popular P2P protocols/networks.

A key feature of our algorithm is its ability to identify
“unknown” P2P protocols. Since the methodology is based
on the general behavior of P2P networks, prior knowledge or
analysis of protocols is not required. Indeed, our algorithm
detected three distinct P2P protocols previously unknown
to us.

We show that our methodology is able to effectively pin-
point among million of flows more than 95% of P2P flows
and bytes in traces from an operational OC48 backbone link.
The number of false positives ranges approximately from 8%
to 12% of the total payload-based estimate. Furthermore,
we demonstrated that our algorithm has the ability to iden-
tify P2P flows missed by payload analysis.

Using estimates from both methodologies, we also chal-
lenged claims of a sharp decline in P2P activity. All of
our estimates of real Internet traffic, even based on simplis-
tic port number analysis, confirm our hypothesis that P2P
traffic is growing in volume and will continue to grow un-
abatedly in the future.

We consider a number of future extensions to strengthen
our algorithm. First, we wish to exploit the availability of
bidirectional traces by merging IP pairs that appear in both
directions of the link. We also want to consider additional
heuristics that use knowledge of specific packet sizes that
may reflect control traffic of P2P protocols. Additionally,
the IP ID field may facilitate the identification of many ex-
isting connections by observing gaps in sequence numbers.

We are in the process of extending and generalizing our
methodology for use in more general traffic profiling. Dur-
ing this study we have illustrated connection characteristics
and patterns of various popular applications. Since sim-
ple port-based application breakdown has become problem-
atic for most workload characterization tasks, extending our
methodology to general traffic profiling may offer a higher
integrity alternative.

Accurate monitoring of P2P traffic has become an im-
portant aspect of Internet traffic modeling. P2P traffic has
already risen to a significant percentage of the total traffic,
15%-20% in our monitored links. On the other hand, its
idiosyncrasies (e.g., bandwidth symmetry) portend a dra-
matic change in our approach to network provisioning and
traffic engineering. In our previous work [16] we predicted
that the P2P paradigm threatens the asymmetrical band-
width assumption inherent in many broadband infrastruc-
tures, e.g., DSL and cable modems, and may even result
in further increases in local peering among ISPs [24]. These
changes in business choices among providers affect the global
Internet topology and routing system, not to mention com-
petitive market dynamics, in ways that we have only begun
to consider. But with efficient, accurate methods of work-
load characterization in the P2P realm, we can at least head
in to the future with better vision.

Acknowledgments
We are thankful to the Coral Reef suite team that made
this study possible. Thanks are due to our colleagues Ken
Keys, Colleen Shannon, Nevil Brownlee, Daniel Andersen
and Khushboo Shah for their support throughout this work.
We would also like to thank Carey Williamson and our IMC
anonymous referees for their helpful comments.

9. REFERENCES
[1] A.Broido, Y.Hyun, R.Gao, and kc claffy. Their share:

diversity and disparity in IP traffic. In PAM, 2004.
[2] Ares. http://www.softgap.com/.
[3] R. Bhagwan, S. Savage, and G. Voelker.

Understanding Availability. In IPTPS 03, 2003.
[4] BitTorrent. http://bitconjurer.org/BitTorrent/.
[5] John Borland. RIAA threat may be slowing file

swapping. “http://news.com.com/2100-1027-1025684.html”.

[6] K. Claffy, H.-W. Braun, and G. Polyzos. A
Parametrizable methodology for Internet traffic flow
profiling. In IEEE JSAC, 1995.

[7] Direct Connect. http://www.neo-modus.com/.
[8] C.Fraleigh e.a. Packet-Level Traffic Measurements

from the Sprint IP Backbone. In IEEE Network, 2003.
[9] eDonkey2000. http://www.edonkey2000.com/.

[10] eMule. http://www.emule-project.net/.
[11] Endace, 2004. www.endace.com.
[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random

Walks in Peer-to-Peer Networks. In INFOCOM, 2004.
[13] I.Graham, M.Pearson, J.Martens, and S.Donnelly.

Dag - a cell capture board for ATM measurement
systems, 1997. wand.cs.waikato.ac.nz.

[14] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber,
A. Al Hamra, and L. Garc’es-Erice. Dissecting
BitTorrent: Five Months in a Torrent’s Lifetime. In
PAM, 2004.

[15] Joltid. http://www.joltid.com.
[16] T. Karagiannis, A.Broido, N.Brownlee, kc claffy, and

M.Faloutsos. Is P2P dying or just hiding? In IEEE
Globecom 2004 - Global Internet and Next Generation
Networks, 2004.

[17] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and
M. Faloutsos. File-sharing in the Internet: A
characterization of P2P traffic in the backbone.
Technical report., 2004. http://www.cs.ucr.edu/∼tkarag.

[18] P. Karbhari, M. Ammar, A. Dhamdhere, H.Raj,
G. Riley, and E. Zegura. Bootstrapping in Gnutella: A
Measurement Study. In PAM, 2004.

[19] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch,
and k. claffy. The architecture of the CoralReef:
Internet Traffic monitoring software suite. In PAM,
2001.

[20] K.Tutschku. A Measurement-based Traffic Profile of
the eDonkey Filesharing Service. In PAM, 2004.

[21] N. Leibowitz, A. Bergman, Roy Ben-Shaul, and Aviv
Shavit. Are File Swapping Networks Cacheable?
Characterizing P2P Traffic. In 7th IWCW, 2002.

[22] D. Moore, K. Keys, R. Koga, E. Lagache, and
kc claffy. Coralreef software suite as a tool for system
and network administrators. In Usenix LISA, 2001.

[23] MP2P. http://www.slyck.com/mp2p.php.
[24] W. B. Norton. The evolution of the u.s. internet

peering ecosystem, 2003.
http://www.equinix.com/pdf/whitepapers/PeeringEcosystem.pdf.

[25] M.L. Garcia Osma, F.J. Ramon Salguero, G. Garcia
de Blas, J. Andres Colas, J. Enriques Gabeiras,
S. Perez Sanches, and R. Trueba Fernandez. Enabling
local preference in peer-to-peer traffic. COST 279
TD(04)017 technical document, 2004.

[26] Pew Internet & American Life Project. Sharp decline
in music file swappers: Data memo from PIP and
comScore Media Metrix, January, 2004.
http://www.pewinternet.org/reports/.

[27] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In MMCN, 2002.

[28] S. Sen, O. Spatscheck, and D. Wang. Accurate,
Scalable In-Network Identification of P2P Traffic
Using Application Signatures. In WWW, 2004.

[29] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic
Across Large Networks. In IMW, 2002.

[30] Soulseek. http://www.slsknet.org/.
[31] tcpdump. http://www.tcpdump.org/.
[32] WinMx. http://www.winmx.com/.
[33] J. Xu, J. Fan, and M. H. Ammar. Prefix-Preserving

IP Address Anonymization: Measurement-based
Security Evaluation and a New Cryptography-based
Scheme. In IEEE ICNP, 2002.

